

LEIBNIZ UNIVERSITÄT HANNOVER DEPARTMENT OF MOLECULAR PLANT BREEDING INSTITUTE OF PLANT GENETICS

MOLECULAR STUDIES ON THE ANTHOCYANIN PATHWAYS IN RED- AND WHITE-FLOWERING POINSETTIAS (*Euphorbia pulcherrima* Willd. ex. Klotzsch)

M.Sc. Vinicius Vilperte

Supervisor

Dr. Thomas Debener

Workshop Molecular Breeding – Braunschweig, August 3, 2017

- **1 FlowerPower Project**
- 2 Poinsettia and the *white paradox*
- 3 Transcriptome analysis
- 4 Transient gene expression
- 5 Follow up analysis

6 – References

eibniz

Universität Hannover

1. FlowerPower Project

Establishing a new generation of horticulturists: Multidisciplinary approach for breeding innovative novelties using classical and biotechnological methods

Horizon 2020 European Union Funding for Research & Innovation

eibniz

Universität Hannover

European Industrial Doctorates (EID)

- Joint doctoral training → at least one academic partner entitled to award doctoral degrees, and at least one partner from outside academia, primarily enterprise.
- Each ESR is enrolled in a doctoral programme and supervised by supervisors from the academic and non-academic sector
- Aimed to develop skills inside and outside academia that respond to public and private sector needs.
- The organisations should be established in at least two different EU or associated countries.

1. FlowerPower Project

ESR1 (Benjamin Walliser – TUW/Selecta) - Anthochlor biosynthesis and its application in biotechnological breeding for novel flower colour

ESR2 (Vinicius Vilperte – LUH/Selecta) - Molecular studies on the anthocyanin pathway in red and white-flowering roses and poinsettias

ESR3 (Carmen Stefanini - TUM/Selecta) - Isolation and identification of the "poinsettia metabolites" and elucidation of their role in anthocyanidin and flavanol biosynthesis in poinsettia and roses

ESR4 (Rares Lucaciu – UNIVIE/Vertis) - Bioinformatic analysis of nextgeneration sequencing data obtained from poinsettia, dahlia, rose and scab infected apple tissues

ESR5 (Daria Nitarska – TUW/Selecta) - Genome editing approach for the creation of blue flowering poinsettia

ESR6 (Martina Kolarek – TUM/BayOZ) - Isolation and identification of the "poinsettia metabolites" and elucidation of their role in anthocyanidin and flavanol biosynthesis in apple tissues

2

we love to grow

Leibniz Universität

Euphorbia pulcherrima Willd. ex Klotzsch

- Euphorbiaceae family
- Mexico as center of origin¹
- Genus *Euphorbia* contains 24 species
- Cassava (Manihot esculenta Crantz) and the castor oil plant (Ricinus communis L.)
- Jatropha curcas L. \rightarrow Complete genome
- E. esula L .and E. fischeriana → Transcriptome^{2,3}
- White poinsettias → Induced artificially by radioactive irradiation

picture redacted

_eibniz

Universität Hannover

https://bsapubs.onlinelibrary.wiley. com/doi/full/10.3732/ajb.1200072

Figure: Trejo et al. 2012

White paradox

• Occurrence of uncoloured (=acyanic) varieties although gene expression and enzyme activities involved in the formation of red anthocyanin pigments can be determined.

Leibniz

100

Universität

Fig. 1 Table 2 OH Naringenin Flavanones F3H F3'H F3'5'H ÓН OH Dihydrokaempferol Dihydromyricetin Dihydroflavonols DFR DFR DFR ÓН ÓН ÓH ÓН ĊН Leucocyanidin Leucopelargonidin Leucodelphinidin Leucoanthocyanidins ANS ANS ANS óн OH Cyanidin Pelargonidin Delphinidin Anthocyanidins GT, AT, MT

Anthocyanin (mg kg-1 FW)	Poinsettia cultivar			
	'Mars White'	'Mars Pink'	'Mira Red'	
Cyanidin-3-galactoside	$2.42\pm0.80~a^b$	147.97 ± 8.13 a	316.26 ± 41.86 a	
	$7.24 \pm 0.35 b$	382,01 ± 36,53 c	1081.68 ± 19.74 c	
	7.29 ± 0.68 b	300,95 ± 28,80 bc	1003.19 ± 38.88 bc	
	$6.71\pm0.58b$	$239.72 \pm 24.65 \text{ b}$	959,53 ± 41,23 b	
Cyanidin-3-glucoside	2.62 ± 0.12 a	566.91 ± 25.89 a	409.64 ± 50.19 a	
	14.90 ± 0.81 b	1405.61 ± 136.07 c	2211.89 ± 48.91 b	
	17.70 ± 1.33 b	1141.33 ± 89.25 bc	2043.63 ± 149.68 b	
	14.61 ± 1.54 b	990,77 ± 90,70 b	2090.56 ± 104.81 b	
Cyanidin-3-rutinoside	$2.60 \pm 0.78 a$	94.13 ± 7.84 a	669,40 ± 65,00 a	
	$11.74 \pm 0.85 \text{ b}$	431.60 ± 58.78 c	1228.72 ± 57.33 b	
	11.74 ± 1.10 b	343.91 ± 39.86 bc	1209.90 ± 46.48 b	
	$11.07\pm0.93b$	$260.48 \pm 22.23 b$	$1129.88 \pm 44.09 b$	
Pelargonidin-3-	0.31 ± 0.16 a	43.85 ± 1.37 a	72.76 ± 13.80 a	
glucoside	5.61 ± 0.35 b	273,40 ± 31,55 c	1485.81 ± 49.31 b	
	$4.56 \pm 0.56 b$	199.41 ± 15.02 b	1346.80 ± 137.20 b	
	$5.44\pm0.67b$	170,82 ± 15,08 b	1398.77 ± 68.85 b	
Pelargonidin-3-	0.23 ± 0.07 a	$8.09 \pm 1.02 a$	129.58 ± 23.78 a	
rutinoside	$2.86 \pm 0.09 b$	53.26 ± 6.65 c	655.37 ± 44.01 b	
	$2.57 \pm 0.29 b$	$41.78 \pm 4.50 \text{ bc}$	666.82 ± 35.20 b	
	$2.73 \pm 0.30 b$	33.71 ± 3.46 b	622.83 ± 26.84 b	

Leibniz

102

Universität

Tahle 1	Anthocyanin ²	Standard used	Poinsettia cultivar			$[M^{+}](m/z)$	$MS^{2}[M^{+}](m/z)$
			'Mars Pink'	'Mars White'	'Mira Red'	n	
	cy-3-Galactoside	cy-3-Galactoside	×	×	×	449	287
	cy-3-Glucoside	cy-3-Glucoside	×	×	×	449	287
	cy-3-Rutinoside	cy-3-Rutinoside	×	×	×	595	449/287
	pel-3-Glucoside	cy-3-Glucoside	×	×	×	433	271
	pel-3-Rutinoside	cy-3-Rutinoside	×	×	×	579	433/271
	cy-3-Rhamnoside	cy-3-Glucoside			×	433	287
	cy-3-Xyloside	cy-3-Glucoside	×		×	419	287
	cy-3-(6"Acetylglucoside)-5-glucoside	cy-3-Glucoside	×		×	653	287
	cy-3-(6"Malonylglucoside)-5-glucoside	cy-3-Glucoside	×		×	697	535/449/287
	pel-3-(6"Malonylglucoside)	cy-3-Glucoside	×		×	519	433/271
	del-3-(2G-Xylosylrutinoside)	cy-3-Glucoside			×	743	597/435/303

```
Fig.1: Tanaka et al. (2008), modified by M.Sc. Dóra Klára Pinczinger; Tables 1 and 2: Slatnar et al. 2013
```

Anthocyanin transport

- Synthesized on the cytoplasmic surface of the endoplasmic reticulum (ER)
- Two models for anthocyanin import into vacuoles: I) transporter-mediated model and II) vesicle trafficking-mediated model¹
- Vesicle-like structures (called anthocyanoplasts) and imported into the central vacuole probably in a vesicle fusion manner²

Leibniz

100

Universität

Fig.1: Ramsay and Glover (2005); Fig. 2: Baudry et al. (2004); Fig. 3: Zhu et al. (2015)

Transcriptome assembly

Fig.1: Ramsay and Glover (2005); Fig. 2: Baudry et al. (2004); Fig. 3: Zhu et al. (2015)

l l Leibniz 102 Universität 1094 Hannover

Transcriptome assembly

Assembly stats

Number of 'genes' \rightarrow 55,191

Number of 'transcripts' \rightarrow 166,153

Assembled bases \rightarrow 230,721,719

 $\mathsf{N50} \rightarrow 1956$

Annotation stats

83,440 contigs with annotation

13,840 unique proteins

Contig ID	UniProt ID	Coverage	E-value
TRINITY_DN11672_c0_g1_i1	SP1_ARATH	62,712	8,09E-16
TRINITY_DN11672_c0_g2_i1	SP1_ARATH	74,783	2,36E-156
TRINITY_DN11672_c0_g2_i2	SP1_ARATH	77,515	7,97E-124
TRINITY_DN11672_c0_g2_i3	SP1_ARATH	69,189	7,97E-124
TRINITY_DN11672_c0_g1_i3	SP1_ARATH	74,178	3,53E-112
TRINITY_DN11615_c0_g1_i1	SP1_ARATH	74,783	2,17E-156
TRINITY_DN11615_c0_g2_i1	SP1_ARATH	74,178	3,54E-112
TRINITY_DN11615_c0_g2_i2	SP1_ARATH	59,603	3,54E-112

Blast Coverage	Number of transcripts	Accumulated number of transcripts
100%	5937	5937
90%	1564	7501
80%	1049	8550
70%	919	9469
60%	877	10346
50%	834	11180
40%	877	12057
30%	805	12862
20%	722	13584
10%	256	13840

Differential Gene Expression (DEG)

Fig.1: Ramsay and Glover (2005); Fig. 2: Baudry et al. (2004); Fig. 3: Zhu et al. (2015)

11 Leibniz 102 Universität 1004 Hannover

l l Leibniz l 2 Universität l 0 4 Hannover

Phytolongin \rightarrow Non-SNARE longin protein involved in membrane-trafficking machinery

VAMP proteins \rightarrow Involved in the targeting and/or fusion of transport vesicles to their target membrane

l l Leibniz l o 2 Universität l o 4 Hannover

UniProt ID	Protein description
PI5K1_ARATH	Phosphatidylinositol 4-phosphate 5-kinase 1
UBP12_ARATH	Ubiquitin carboxyl-terminal hydrolase 12
MYOB3_ARATH	Myosin-binding protein 3
P2C49_ARATH	Probable protein phosphatase 2C 49
CRK2_ARATH	Cysteine-rich receptor-like protein kinase 2
Y1684_ARATH	Probable LRR receptor-like serine/threonine-protein kinase
PI5K8_ARATH	Phosphatidylinositol 4-phosphate 5-kinase 8
MYO6_ARATH	Myosin-6
CALM_MEDSA	Calmodulin
WRK15_ARATH	WRKY transcription factor 15
LRL12_ARATH	Leaf rust 10 disease-resistance locus receptor-like protein kinase-like
KSG7_ARATH	Shaggy-related protein kinase eta

Vitrac et al. 2000; Fig.1: Bulgakov et al. 2016.

Transient expression in Poinsettia

• Glutathione S-transferase (GST) infiltration

Plasmid/Strain	Plant	Plant	Infiltration	Events with visible
	genotype	phenotype	events	transformation 3 dai.
	3010	white	8	0
Red bract GST/	3174	white	8	0
EHA105 or	3119	white	6	0
GV105	56-1	sparkle	8	0
	3045	white	1	0
	3010	white	3	0
	3174	white	8	0
An9/ EHA105	3119	white	8	0
	56-1	sparkle	8	0
	3122	red	1	0
	3010	white	4	0
	3174	white	9	0
An9/ GV3101	3119	white	9	0
	56-1	sparkle	9	0
	3122	red	1	0
	3010	white	4	0
	3174	white	9	0
Bz2/ EHA105	3119	white	9	0
	56-1	sparkle	9	0
	3122	red	1	0
Bz2/ GV3101	3010	white	3	0
	3174	white	8	0
	3119	white	8	0
	56-1	sparkle	8	0
	3122	red	1	0
CED '16-'	3010	white	8	7
	3174	white	12	11
	3119	white	10	9
OFF 100	56-1	sparkle	12	0
	3045	white	1	1
	3122	red	1	0

GFP '16e' infiltration in Poinsettia

A: Genotype 3174 bract not infiltrated. B and D: Genotype 3174 infiltrated with EHA 105 *Agrobacterium* strain, green coloration in the infiltration area. C: Genotype 3119 infiltrated with EHA 105 *Agrobacterium* strain, visible necrotic cells in infiltration area. 14 days after infiltration.

Figures: M.Sc. Dóra Klára Pinczinger

11 Leibniz 102 Universität 1004 Hannover

Transient expression in Poinsettia

Lobelia erinus

Calibrachoa

Euphorbia pulcherrima

UBQ10:dsRed

dsRed cloned in several Agrobacterium strains

- GV3101
- GV2260
- EHA.105
- ABI

Transient expression in Poinsettia

35S:GUS

Leaf sections incubated overnight with bacteria solution

Bracts kept on the plant

Bracts kept in a humid plastic box

Transient expression in Poinsettia

- PacBio Single Molecule, Real-Time (SMRT[®]) will be performed from the same homozygous genotype
 - Iso-Seq method → generates full-length cDNA sequences (5' end of transcripts to the poly-A tail) eliminating the need for transcriptome reconstruction using isoform-inference algorithms;
 - Capable to capture full-length isoforms up to 10kb;
- New Illumina RNA-Seq for one red x white pair
 - 3 color development stages;
 - 3 biological replicates;
- Small RNA-Seq
 - Look for miRNAs and/or siRNAs.

Universität Hannover

6. References

Bulgakov, V.P., Avramenko, T.V., Tsitsiashvili, G.S. (2016). Critical analysis of protein signaling networks involved in the regulation of plant secondary metabolism: focus on anthocyanins. Crit Rev Biotechnol. 24: 1-16.

Grotewold, E. (2006). The Science of Flavonoids. Springer Science + Business Media, Inc., New York, NY USA.

Liu, Y., Zhou, J., White, K.P. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 30(3): 301-4.

Schurch, N.J. et al. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 22(6): 839-51.

Wu, B., Guo, W. (2015). The exocyst at a glance. J Cell Sci. 128: 2957-2964.

Vitrac X, et al. Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry, 2000.

Horvath, DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). *BMC Genomics* 2008, 9:536

Ramsay and Glover. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 2005 Feb;10(2):63-70.

Taiz, L. and Zeiger, E. (2010). Plant Physiology. Sinauer Associates Inc., Publishers, Sunderland, MA USA, 5. edition.

Baudry et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004 Aug;39(3):366-80.

Gomez, C., Conejero, G., Torregrosa, L., Cheynier, V., Terrier, N., and Ageorges, A. (2011). In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J. 67, 960–970.